جمهورى اسيلامى ايران اداره كل آموزش و يورورش شهر تهران اداره آموزش و بيوورش منطقه هفت تهران		
بارم	سوال	رديف
1/a	تصادف يكى از جعبهها را انتخاب كرده و دو مهره بيرون مى آوريمه. با كدام احتمال هر دو مهره مهره سفيد است؟	1
r	مىدانيم احتمال اصابت هر تير رها شده هِ	r
r	 	r
1/a	$\left\{\frac{1}{\alpha}+1, \frac{1}{\beta}+1\right\}$ باشند مجموعه جواب كدام معادلـه بسه صسورت $r x^{r}-r x-r=0$ اكر α و β ريشههاى	F
1/a		Δ
1/a	تابع با ضابطهى f(x) F در يكـ بازه صعودى است. ضابطهى معكــوس آن در ايــن بــازه كدام است؟	¢
1/a	دنبالهى	v
1/a	V سه جملهى اول يكى تصاعد هندسى نزولىاند. مجموع X جمله اول اين دنباله كدام است؟	\wedge
1/a	Lnr = تجربه كارى، روزانه •V واحد را كامل مى كند؟	9
1/a	جواب كلى = ${ }^{\text {¢ }}$ به كدام صورت است؟	1.
r	در تابع آهنگَ لحظهاى تابع در اين نقطه چقدر كمتر است؟	11
r	د	ir
F.		¢إس\%

نام دبير: نوبت امتحانى: اول

تتداد برت راهنماى تصحيح: ا برگ

1/0	$P(A)=\frac{1}{r} \times \frac{\binom{r}{r}}{\binom{r}{r}}+\frac{1}{r} \times \frac{\binom{r}{r}}{\binom{q}{r}}$	1
r	$\frac{1}{r} \times\binom{\Delta}{1}\left(\frac{r}{\Delta}\right)^{\prime}\left(\frac{r}{\Delta}\right)^{r}+\frac{1}{r}\binom{r}{1}\left(\frac{r}{\Delta}\right)^{\prime}\left(\frac{r}{\Delta}\right)^{r}$	r
r	$\frac{\varphi \times r!}{\binom{r}{\Delta}+r!}=\cdot / \psi$	r
1/0	$\frac{1}{X}+1=X \rightarrow X=\frac{1}{X-1} \quad r\left(\frac{1}{X-1}\right)^{r}-r\left(\frac{1}{X-1}\right)-r=0 \rightarrow r-r(X-1)-f(X-1)^{r}=0 \rightarrow-F X^{r}+\Delta X+1=0$	F
1/0		Δ
1/0		9
1/0	$\lim _{n \rightarrow \infty} a_{n}=\frac{1}{f} \rightarrow \text { نراندار } \rightarrow \text { نزولى } \rightarrow \text { كمك, }$	v
1/0	$f X^{r}=\left(x^{r}-r\right)\left(x^{r}+F\right) \rightarrow \text { تنيير متغير } x=r \rightarrow \Lambda, f, r, \ldots \quad S_{V}=\Lambda \times \frac{1-\left(\frac{1}{r}\right)^{r}}{1-\frac{1}{r}}$	\wedge
1/0	$\mathrm{r} \cdot=\mathrm{q} \cdot-\mathrm{r} \cdot \mathrm{e}^{-. / \cdot r t} \rightarrow \mathrm{e}^{-. / \cdot \mathrm{rt}}=\frac{1}{r} \rightarrow-. / \cdot \mathrm{rt}=-. / r \lambda \rightarrow \mathrm{t}=r \mathrm{q}$	9
1/0	$\begin{aligned} & r \sin x \cos x=1-r \cos ^{r} x \rightarrow \sin r x=\cos r x \rightarrow \tan r x=1 \\ & r x=k \pi+\frac{\pi}{r} \rightarrow x=\frac{k \pi}{r}+\frac{\pi}{\lambda} \end{aligned}$	1.
r	$\begin{aligned} & \frac{\mathrm{f}(1 / F F)-\mathrm{f}(1)}{\cdot / F F}=\frac{\cdot / F F}{\sqrt{V / F F}}=\frac{\frac{. / F F}{\frac{1 / F}{\cdot / F}}=\frac{1}{\frac{1 r}{1}}=\frac{\Delta}{q}}{\mathrm{f}^{\prime}(1)=\frac{1}{\sqrt{x}} \xrightarrow{x=1} 1-\frac{\Delta}{q}=\frac{1}{q}} \end{aligned}$	11
r	$\begin{aligned} & f_{+}^{\prime}(0)=\frac{\cos x}{1+\cos x} \xrightarrow{x=0} f_{+}^{\prime}(0)=\frac{1}{r} \rightarrow r-\frac{1}{r}=\frac{r}{r} \\ & f_{-}^{\prime}(0)=+r \cos r x \xrightarrow{x=0} f_{-}^{\prime}(0)=r \end{aligned}$	IT
Y.	موفق باشّيد	,

